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Data analysts of a Law Enforcement Agency (LEA)

• Work with tabular data on a daily basis

• Identification of patterns & suspects

• Comparative case analysis
(consider similarities & correlations)


Challenge:
consider multiple attributes simultaneously
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Main Problem interpretation of the visual depiction
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Our Study



Can domain experts not trained in advanced statistics 
interpret the depiction of a data projection?
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Data: San Francisco Crimes

Category

DescriptionDayOfWeek

Date

Time

PdDistrict

Resolution

AddressLocation

Category: DISORDERLY CONDUCT
Description: MAINTAINING A PUBLIC NUISANCE AFTER NOTIFICATION
DayOfWeek: Sunday
Date: 08/21/2016 12:00:00 AM
Time: 6:36
PdDistrict: TENDERLOIN
Resolution: ARREST, BOOKED
Address: 400 Block of LEAVENWORTH ST
Location: (37.7851373814889°, -122.414457162309°)

https://data.sfgov.org/
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Data Types
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DISORDERLY CONDUCTMAINTAINING A PUBLIC NUISANCE AFTER NOTIFICATION08/21/2016 00:06:36 AM

categoricalnumerical textual

Similarity between ...

numerical values 𝑠𝑖𝑚 𝑉1, 𝑉2 = 𝑉1 − 𝑉2

textual attrib. 𝑠𝑖𝑚 𝑣1, 𝑣2 =
𝑣1∙𝑣2

𝑣1 ∙ 𝑣2

categorical values 𝑠𝑖𝑚 𝑉1, 𝑉2 = 𝑉1 ≠ 𝑉2

How to combine different data types?



Interactive Visualization
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Weighting and Similarity
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Projection Content Lens Tooltip Data View



Visual Data Exploration
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Interpretation Study



Study Design
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3 LEA data analysts (1 female)

• worked with data tables on a daily basis

• not used to work with abstract data representations

4 consecutive tasks

• Each analyst was confronted with the same task order

• Each task was introduced as a new, subsequent analysis question



Study Design
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San Francisco Crime Data

• Week from Monday, July 25, 2016 to Monday, August 1, 2016

• 13 dimensions

• 36 different crime categories

After the study, we let analysts fill out a questionaire regarding:

• basic understanding

• interaction concepts

• extraction of knowledge



Tasks



Task 1
Is there a pattern among dimensions between days?



Task 1: Model Solution



Task 2
Why is the Monday separated from all other days of 

the week? What is special about the Date distribution?



Task 2: Model Solution



Task 3
Which distribution of dimension values can you find for 

the rest of the week?



Task 3: Model Solution



Task 4
Leaving the temporal aspect behind, is there a pattern 

based on places or crime types?



Task 4: Model Solution



Findings
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F1: The analysis starts with an already known hypothesis.



Crime Routine Activity (L. E. Cohen, 1979) 
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Place District / Street / GPS

Time Date / Time / Weekday

Occasion Crime Opportunity
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F1: The analysis starts with an already known hypothesis.

F2: Analysts always consider to add/remove dimensions to the depiction 
to explain a cluster separation. 

F3: Analysts do not add/remove dimensions to explain an anomaly they 
are insecure about.

F4: Analysts untrained in DR have a great understanding of a multivariate 
depiction given a use case relating to their domain. 



Conclusion

Interactive visualization system to 
explore the data using the Gower Metric 

Qualitative study of subjective 
experiences of domain experts

Jäckle et al. | Interpretation of Dimensionally-Reduced Crime Data
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